Provincial Department of Education - Sabaragamuwa - Week School
ducation,Sabaragamuwa Province/ Weekly School Department of Education.Sabaragamuwa Province/ Weekly School Department of Educarroirsaoaragamuwa Province/ Weelly Scho ol Department of Education SabaragamuwaPro Province/ Weelly School Department of Education,SabaragamuwaProvince/ Weekly School Dep

Week: $\mathbf{2 3}^{\text {rd }} \mathbf{- 2 9}^{\text {th }}$ May,2021

Translated by: U. V. S. S .Gunathilaka Kg/Dehi Dehiovita National School

16. Parallelogram.

A quadrilateral with both pairs of opposite sides parallel is defined as a parallelogram.

In a parallelogram,
(i) Opposite sides are equal.
(ii) Opposite angles are equal.
(iii) The area of the parallelogram is bisected by each diagonal.
(iv) The diagonals bisect each other.

(i) $A B=C D$

$$
A D=B C
$$

(ii) $A B^{C} C=A D^{C} C$
$D A B=D C B$
(iii) Area of $A B D \Delta=$ Area of $C B D \Delta$

Area of $A B C \Delta=$ Area of $A D C \Delta$

Solve all the questions in Exercise 16.1 in your text book page numbers 163 and 164.

Data: $A B C D$ is a parallelogram.
To be proved: (i) $A B=D C$ and $A D=B C$
(ii) $B \hat{A} D=B \hat{C} D$ and $A \hat{D} C=A \hat{B} C$
(iii) Area of $\triangle A B D=$ Area of $\triangle B C D$

Area of $\triangle A C D=$ Area of $\triangle A B C$
Construction: Join $B D$
We can obtain the three results by showing that the triangles $A B D$ and $B C D$ are congruent. Let us prove that the two triangles are congruent under the case AAS as follows.
Proof: In the triangles $A B D$ and $B C D$,

$$
\begin{array}{ll}
A \hat{D} B=C \hat{B} D & \text { (Alternate angles, } A D / / B C) \\
A \hat{B} D=B \hat{D} C & \text { (Alternate angles, } A B / / D C)
\end{array}
$$

$B D$ is the common side.

$$
\therefore \triangle A B D \equiv \triangle B C D \quad(\mathrm{AAS})
$$

Since the corresponding elements of congruent triangles are equal,

$$
A B=D C \text { and } A D=B C
$$

Also $B \hat{A} D=B \hat{C D}$.
Area of $\triangle A B D=$ Area of $\triangle B C D \quad($ Since $\triangle A B D \equiv \triangle B C D)$
\therefore The area of the parallelogram $A B C D$ is bisected by the diagonal $B D$. The above facts can also be proved by using the diagonal $A C$.

Solve all the questions in Exercise 16.2 in your text book page numbers 167 and 168.

