

Grade 10<u></u>-Lesson 19 – Logarithm

Laws of indices

- > When multiplying powers with same base the indices are added. example - $a^3 \times a^2 = a^5$
- When dividing powers with same base the indices are subtracted
 Example a⁵ ÷ a² = a³
- In power of a power indices are multiplied Example- (a³)² = a⁶

The reciprocal is taken when converting negative indices to positive indices and positive indices to negative indices.

Example - *i*) $\frac{1}{a^{-2}} = a^2$, *ii*) $a^3 = \frac{1}{a^{-3}}$

The value of zero index to any base is 1 a⁰ = 1

Solve review exercise in page no 1 and 2 in Mathematics Part II

Logarithms

 Writing in logarithm form when given in index form Example - 2³ = 8 → log₂ 8 = 3
 Writing in index form when given in logarithm form Example - log₃ 81 = 4 → 3⁴ = 81

Solve 19.1exercise in page no 4 in Mathematics Part II

Lows of logarithms

$$\log_{a}(MN) = \log_{a} M + \log_{a} N$$
$$\log_{a}\left(\frac{M}{N}\right) = \log_{a} M - \log_{a} N$$

Example

- I.
- II.
- $\log_{2} 5 + \log_{2} 8 = \log_{2}(5 \times 8) = \log_{2} 40$ $\log_{a} 8 + \log_{a} 6 \log_{a} 2 = \log_{a} \left(\frac{8 \times 6}{2}\right) = \log_{a} 24$ $\log_{10} 250 + \log_{10} 8 \log_{10} 2 = \log_{10} \left(\frac{250 \times 8}{2}\right) = \log_{10} 1003$ III.

Solve 19.2 exercise in page no 8 in your exercise book