$4^{\text {th }}$ week July

Grade 9- Graphs

Graphs of the functions of the form $y=m x+c$ and functions given by ax+by=c

- Example: Drawing a graph of the function $y=2 x-1$

x	$2 x-1$	y	(x, y)
-2	$2 \times-2-1$	-5	$(-2,-5)$
-1	$2 \times-1-1$	-3	$(-1,-3)$
0	$2 \times-0-1$	-1	$(0,-1)$
1	$2 \times 1-1$	1	$(1,1)$
2	$2 \times 2-1$	3	$(2,3)$

- Accordingly the graph is given below.

- Accordingly the gradient ($m, y=\underline{m} x+c$) of the function $y=2 x-1$ is 2
- The distance from the origin to the point where the straight line intersect the y axis is known as intercept. It is denoted by c $(y=m x+c)$.
$C=-1$

Graph of functions given by equation of the form $a x+b y=c$

- Example: Drawing a graph of the function $3 x+2 y=6$

$$
\begin{aligned}
& 3 \mathrm{x}+2 \mathrm{y}=6 \\
& \frac{2 y}{2}=\frac{-3 x}{2}+\frac{6}{2} \\
& \mathrm{y}=\frac{-3 x}{2}+3
\end{aligned}
$$

x	$\frac{-3}{2} x+3$	y
-2	$\frac{-3}{2} \times-2+3$	6
0	$\frac{-3}{2} \times 0+3$	3
2	$\frac{-3}{2} \times 2+3$	0

$$
y=\frac{-3}{2} x+3
$$

- In this graph, $\mathrm{m}=\frac{-3}{2}$ and $\mathrm{c}=3$
- Accordingly do the exercise 20.3

