Subject-science

Grade -10

Translated by-M.G.P.Miyanadeniya Kg/Dehi/Dr. N.M. Perera Central College

Motion in a straight line

1. Following table shows the motion of an object. Fill in the blanks.

Time (s)	0	1	2	3	4	5
Velocity $\left(\mathrm{ms}^{-1}\right)$	0	2	4	6	8	10
Increase of velocity during each 1s	$\ldots \ldots .$.	$\ldots \ldots . .$.	$\ldots .$.	$\ldots \ldots$.	$\ldots .$.	$\ldots .$.

- The increase of velocity during each 1 s interval is the same.Therefore it is called \qquad

2. A car starting from rest acquires a velocity of $20 \mathrm{~ms}^{-1}$ after moving 5 s under a uniform acceleration. Calculate the acceleration of the car.
3. An object with $24 \mathrm{~ms}^{-1}$ came rest. Following is the table which shows the velocity of an object.

Time (s)	0	1	2	3	4
Velocity $\left(\mathrm{ms}^{-1}\right)$	24	18	12	6	0
Decrease of velocity during each 1s	$\ldots \ldots .$.	$\ldots \ldots$.	$\ldots \ldots$	$\ldots \ldots \ldots$.	$\ldots \ldots$.

- The decrease of velocity during each 1 s interval is the same. Therefore, it is called \qquad

4. A train moved with $20 \mathrm{~ms}^{-1}$. It came rest within 5 s . Calculate the deceleration of the train.
5. Draw a displacement-time graph using the following information.

Time (s)	0	1	2	3	4	5
Displacement (m)	0	10	20	30	40	50

a) find the total displacement of the object using the graph.
b) Calculate the velocity using the gradient of the graph.
06. Following is the information of the moving object. Draw a velocity-time graph using the following information.

Time (s)	0	1	2	3	4	5
Velocity $\left(\mathrm{ms}^{-1}\right)$	0	4	8	12	16	20

a) Find the total distance of the object.
b) Calculate the acceleration using the gradient of the graph.
07. Following is the information of the moving object.

Time (s)	0	1	2	3	4	5	6	7	8
Velocity $\left(\mathrm{ms}^{-1}\right)$	0	3	6	9	12	12	12	6	0

a) Draw a velocity -time graph using the above information.
b) Calculate the acceleration of the object within first 4 s .
c) Find the distance of object with uniform velocity.
d) Calculate the deceleration of the object.
e) Find the total distance of the object.
08. Give two examples for the motion under the gravitational acceleration.
09. A body falling vertically from the top of the building. After starting from rest it takes 5 s to reach the ground. Gravitational acceleration is $10 \mathrm{~ms}^{-2}$
i) Draw velocity -time graph related to the above information
ii) Find the height of the building using the above graph.
iii) Find the velocity of the object when reaching to the ground.

