Motion in a straight line

01. Following table shows the motion of an object. Fill in the blanks.

Time (s)	0	1	2	3	4	5
Velocity (ms ⁻¹)	0	2	4	6	8	10
Increase of velocity during each 1s						
		•••••			• • • • • •	••••

- The increase of velocity during each 1s interval is the same. Therefore it is called
- 02. A car starting from rest acquires a velocity of 20ms⁻¹ after moving 5s under a uniform acceleration. Calculate the acceleration of the car.
- 03. An object with 24ms⁻¹ came rest. Following is the table which shows the velocity of an object.

Time (s)	0	1	2	3	4
Velocity (ms ⁻¹)	24	18	12	6	0
Decrease of velocity during each 1s					
	•••••	• • • • • • •	• • • • • •	•••••	•••••

- The decrease of velocity during each 1s interval is the same. Therefore, it is called
- 04. A train moved with 20ms⁻¹. It came rest within 5s. Calculate the deceleration of the train.

05. Draw a displacement-time graph using the following information.

Time (s)	0	1	2	3	4	5
Displacement (m)	0	10	20	30	40	50

- a) find the total displacement of the object using the graph.
- b) Calculate the velocity using the gradient of the graph.

06. Following is the information of the moving object. Draw a velocity-time graph using the following information.

Time (s)	0	1	2	3	4	5
Velocity (ms ⁻¹)	0	4	8	12	16	20

- a) Find the total distance of the object.
- b) Calculate the acceleration using the gradient of the graph.

07. Following is the information of the moving object.

Time (s)	0	1	2	3	4	5	6	7	8
Velocity (ms ⁻¹)	0	3	6	9	12	12	12	6	0

- a) Draw a velocity –time graph using the above information.
- b) Calculate the acceleration of the object within first 4s.
- c) Find the distance of object with uniform velocity.
- d) Calculate the deceleration of the object.
- e) Find the total distance of the object.
- 08. Give two examples for the motion under the gravitational acceleration.
- 09. A body falling vertically from the top of the building. After starting from rest it takes 5s to reach the ground. Gravitational acceleration is 10ms⁻²
 - i) Draw velocity –time graph related to the above information
 - ii) Find the height of the building using the above graph.
 - iii) Find the velocity of the object when reaching to the ground.