

The Least Common Multiple of Algebraic Expressions

First, let us find what are factors. As an example we take 6.. 6 can be written as , $6 = 2 \times 3$, therefore 2 and 3 are factors of 6.

1. LCM of some numbers

LCM of some numbers is the smallest number divisible by all that numbers. Let us find the LCM of 8, 12 and 24 by writing as a product of prime factors.

 $8 = 2 \times 2 \times 2 = 2^{3}$ $12 = 2 \times 2 \times 3 = 2^{2} \times 3^{1}$ $24 = 2 \times 2 \times 2 \times 3 = 2^{3} \times 3^{1}$

- 2 and 3 are the distinct prime factors of above numbers
- To find LCM, we have to get the product of powers with the greatest indices.
- The greatest power of $2 = 2^3$ The greatest power of $3 = 3^1$
- LCM = $2^3 \times 3^1 = 8 \times 3 = 24$

2. The LCM of some expressions with algebraic terms.

Let us find the LCM of $4x^2$, 6xy and 8y

Now let us write the numerical terms of each term as a product of prime factors and, the algebraic terms as a product of distinct factors.

 $4x^{2} = 2 \times 2 \times x \times x = 2^{2} \times x^{2}$ $6xy = 2 \times 3 \times x \times y = 2^{1} \times 3^{1} \times x^{1} \times y^{1}$ $8y = 2 \times 2 \times 2 \times y = 2^{3} \times y^{1}$

The distinct factors of above algebraic expressions are 2, 3, x and y

The greatest power of $2 = 2^3$ The greatest power of $3 = 3^1$

The greatest power of $x = x^2$

The greatest power of $y = y^1$

Now let us get the LCM by taking the product of factors with the greatest powers. LCM = $2^3 \times 3^1 \times x^2 \times y^1 = 8 \times 3 \times x^2 \times y^1 = 24x^2y$

Let us consider the LCM of some algebraic expressions

i. $(y-x)^2, 2(x-y)^2, 4(x-y)$ $(y-x)^2 = (x-y)^2$ $2(x-y)^2 = 2 \times (x-y)^2$ $4(x-y) = 2^2 \times (x-y)$ LCM = $2^2 \times (x-y)^2 = 4(x-y)^2$

ii. (2-x), x(x-2), 3x-6

 $(2 - x) = (-1) \times (x - 2)$ $x(x - 2) = x \times (x - 2)$ $3x - 6 = 3 \times (x - 2)$ $LCM = (-1) \times 3 \times x \times (x - 2) = -3x(x - 2)$ Remember $(b-a)^2 = (a-b)^2$

Remember
$$(b-a) = (-1)(a-b)$$

iii.
$$2(x^2 - y^2), 4(x + y), x(x - y)$$

 $2(x^2 - y^2) = 2 \times (x - y) \times (x + y)$ $4(x + y) = 2^2 \times (x + y)$ $x(x - y) = x \times (x - y)$ Remember $(a^2 - b^2) = (a - b)(a + b)$

$$LCM = 2^2 \times x \times (x - y) \times (x + y) = 4x(x - y)(x + y)$$

iv.
$$x^2 - x - 2$$
, $x^2 - 4$, $x^3 - 2x^2$

 $x^{2} - x - 2 = (x - 2)(x + 1)$ $x^{2} - 4 = (x - 2)(x + 2)$ $x^{3} - 2x^{2} = x^{2}(x - 2)$

$$LCM = x^{2} \times (x - 2) \times (x + 2) \times (x + 1) = x^{2}(x - 1)(x + 2)(x + 1)$$

Exercise 12.1, 12.2 and 12.3 of mathematics text book