Sabaragamuwa Provincial Education Department - Weekly School

Week: 12 nuwa Province/ Weelly School Deparment of Education Sabaragamuwa Prov

The Least Common Multiple of Algebraic Expressions

First, let us find what are factors.
As an example we take 6..
6 can be written as, $6=2 \times 3$, therefore 2 and 3 are factors of 6 .

1. LCM of some numbers

LCM of some numbers is the smallest number divisible by all that numbers.
Let us find the LCM of 8,12 and 24 by writing as a product of prime factors.

$$
\begin{aligned}
& 8=2 \times 2 \times 2=2^{3} \\
& 12=2 \times 2 \times 3=2^{2} \times 3^{1} \\
& 24=2 \times 2 \times 2 \times 3=2^{3} \times 3^{1}
\end{aligned}
$$

- 2 and 3 are the distinct prime factors of above numbers
- To find LCM, we have to get the product of powers with the greatest indices.
- The greatest power of $2=2^{3}$

The greatest power of $3=3^{1}$

- $\mathrm{LCM}=2^{3} \times 3^{1}=8 \times 3=24$

2. The LCM of some expressions with algebraic terms.

Let us find the LCM of $4 x^{2}, 6 x y$ and $8 y$
Now let us write the numerical terms of each term as a product of prime factors and, the algebraic terms as a product of distinct factors.
$4 x^{2}=2 \times 2 \times x \times x=2^{2} \times x^{2}$
$6 x y=2 \times 3 \times x \times y=2^{1} \times 3^{1} \times x^{1} \times y^{1}$
$8 y=2 \times 2 \times 2 \times y=2^{3} \times y^{1}$
The distinct factors of above algebraic expressions are $2,3, x$ and y
The greatest power of $2=2^{3}$
The greatest power of $3=3^{1}$
The greatest power of $x=x^{2}$
The greatest power of $y=y^{1}$

Now let us get the LCM by taking the product of factors with the greatest powers.
$\mathrm{LCM}=2^{3} \times 3^{1} \times x^{2} \times y^{1}=8 \times 3 \times x^{2} \times y^{1}=24 x^{2} y$

Let us consider the LCM of some algebraic expressions

i. $(y-x)^{2}, 2(x-y)^{2}, 4(x-y)$

$$
\begin{aligned}
& (y-x)^{2}=(x-y)^{2} \\
& 2(x-y)^{2}=2 \times(x-y)^{2} \\
& 4(x-y)=2^{2} \times(x-y) \\
& \mathrm{LCM}=2^{2} \times(x-y)^{2}=4(x-y)^{2}
\end{aligned}
$$

ii. $(2-x), x(x-2), 3 x-6$

$$
(2-x)=(-1) \times(x-2)
$$

Remember

$$
(b-a)^{2}=(a-b)^{2}
$$

$$
x(x-2)=x \times(x-2)
$$

$3 x-6=3 \times(x-2)$
$\mathrm{LCM}=(-1) \times 3 \times x \times(x-2)=-3 x(x-2)$
iii. $\quad 2\left(x^{2}-y^{2}\right), 4(x+y), x(x-y)$
$2\left(x^{2}-y^{2}\right)=2 \times(x-y) \times(x+y)$
$4(x+y)=2^{2} \times(x+y)$
Remember
$x(x-y)=x \times(x-y)$

$$
\left(a^{2}-b^{2}\right)=(a-b)(a+b)
$$

$$
\mathrm{LCM}=2^{2} \times x \times(x-y) \times(x+y)=4 x(x-y)(x+y)
$$

iv. $\quad x^{2}-x-2, x^{2}-4, x^{3}-2 x^{2}$
$x^{2}-x-2=(x-2)(x+1)$
$x^{2}-4=(x-2)(x+2)$
$x^{3}-2 x^{2}=x^{2}(x-2)$
$\mathrm{LCM}=x^{2} \times(x-2) \times(x+2) \times(x+1)=x^{2}(x-1)(x+2)(x+1)$

