

Quantification of Elements and Compounds

1. Find the relative molecular mass and molar mass of the following compounds.

i.	CO ₂ (Carbon dioxide)	ii.	NaCl (Sodium chloride)
iii.	CaCO ₃ (Calcium carbonate)	iv.	NH₄Cl (Ammonium chloride)
V.	Mg ₃ N ₂ (Magnesium ni-tride)	vi.	H₂S (Hydrogen sulphide)
vii.	AICl ₃ (Aluminium chloride)	viii.	(NH ₄) ₂ CO ₃ (Ammonium carbonate)
ix.	CuSO ₄ (Copper sulphate)	х.	Na ₂ C ₂ O ₄ (Sodium oxalate)
xi.	CH ₃ OH (Methyl alchohol/Methanol)	xii.	CS2 (carbon disulphide)
xiii.	C ₈ H ₁₈ (Octane)	xiv.	CH3COOH (Acetic acid
	C ₁₂ H ₂₂ O ₁₁ (Sucrose)	XVi.	CO(NH ₂) ₂ (Urea)
XV.	,		
xvii.	C ₉ H ₈ O ₄ (Asprine)	xviii.	HNO ₃ (Nitric acid)
xix. CCl ₄ (Carbon tetrachloride) xx. C ₈ H ₉ NO ₂ (Paracetamol)			
(R.A.M.: H=1, C=12, N=14, 0=16, Na=23, Mg=24, Al=27,S=32,Cl=35.5, S=32)			

2. Calculate the following, considering 67g of Sodium oxalate.

- a. The number of Sodium Oxalate moles
- b. The number of Oxygen moles
- c. Total number of atoms in moles
- d. The number of carbon atoms
- 3. Calculate the following, considering 2.5mol of Ammonium carbonate.
 - e. The mass
 - f. Number of Hydrogen atoms
 - g. Total number of atoms in moles
- 4. 500mg of Paracetamol is included in the tablet of Paracetamol that use as a pain killer. Find the number of moles of Paracetamol includes in a tablet. Then find the number of moles of each element contains in it.