Week : 23

Translated by: K.P.C.M.Jayasinghe Kg/Dehi Yatiyanthota C.C.

Grade 10_-Lesson
 19-Logarithm

Laws of indices

$>$ When multiplying powers with same base the indices are added.
example - $a^{3} \times a^{2}=a^{5}$
$>$ When dividing powers with same base the indices are subtracted
Example - $a^{5} \div a^{2}=a^{3}$
$>$ In power of a power indices are multiplied
Example- $\left(a^{3}\right)^{2}=a^{6}$
The reciprocal is taken when converting negative indices to positive indices and positive indices to negative indices.
Example - $\left.i) \frac{1}{\mathrm{a}^{-2}}=\mathrm{a}^{2}, \quad i i\right) a^{3}=\frac{1}{a^{-3}}$
$>$ The value of zero index to any base is 1 $a^{0}=1$

Solve review exercise in page no 1 and 2 in Mathematics Part II

Logarithms

> Writing in logarithm form when given in index form
Example - $2^{3}=8 \rightarrow \log _{2} 8=3$
Writing in index form when given in logarithm form
Example $-\log _{3} 81=4 \rightarrow 3^{4}=81$

Solve 19.1exercise in page no 4 in Mathematics Part II

Lows of logarithms

$$
\begin{aligned}
& \log _{a}(M N)=\log _{a} M+\log _{a} N \\
& \log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N
\end{aligned}
$$

Example
I. $\quad \log _{2} 5+\log _{2} 8=\log _{2}(5 \times 8)=\log _{2} 40$
II. $\log _{a} 8+\log _{a} 6-\log _{a} 2=\log _{a}\left(\frac{8 \times 6}{2}\right)=\log _{a} 24$
III. $\log _{10} 250+\log _{10} 8-\log _{10} 2=\log _{10}\left(\frac{250 \times 8}{2}\right)=\log _{10} 1003$

Solve 19.2 exercise in page no 8 in your exercise book

