Weekly School -Department of Education, Sabaragamuwa Province

$21^{\text {st }}$ Lesson - Graph

Graph of a straight line ($y=m x+c$)
$y=m x+c$
$\mathrm{m}=$ gradient
$\mathrm{c}=\mathrm{y}$ intercept

$$
\begin{aligned}
& y=3 x-2 \\
& \text { gradient }(m)=3 \\
& y \text { intercept }(c)=-2
\end{aligned}
$$

$$
\begin{aligned}
& y+x+2=0 \\
& y=-x-2 \\
& \text { gradient (m) }=-2 \\
& \text { y intercept } \\
& \text { (c) }=-1
\end{aligned}
$$

$$
\begin{aligned}
& 2 y=4 x+1 \\
& y=2 x+\frac{1}{2} \\
& \text { gradient }(\mathrm{m})=2 \\
& \mathrm{y} \text { intercept }(\mathrm{c})={ }_{2}^{1}-
\end{aligned}
$$

. Let us solve review Questions on Page 20

Find the gradient when $\mathbf{2}$ coordinates are given

- The coordinates of two points on a straight line are $(2,3)$ and $(4,7)$. Find the gradient of the straight line.

$$
\begin{aligned}
& \text { gradient }(m)=\frac{(7-3)}{(4-2)}=\begin{array}{l}
4 \\
2
\end{array} \\
& m=2
\end{aligned}
$$

The coordinates of two points on a straight line are $(-2,2)$ and $(-1,-2)$. Find the gradient of the straight line.

$$
\begin{gathered}
\text { gradient }(m)=\frac{(2-(-2))}{(-2-(-1))}=\frac{4}{(-1)} \\
m=(-4)
\end{gathered}
$$

Let us solve all the problems in the exercise 28.2 on page 23

Finding the equation of a straight line when the intercept of its graph and the coordinates of a point on the graph are given

- The intercept of the graph of a straight line is 2 . The coordinates of a point on the graph is $(2,6)$. Write the equation of the straight line.

By substituting $\mathrm{c}=3, \mathrm{x}=2$ and $\mathrm{y}=6$ into the equation of the function $y=m x+c$.

$$
\begin{aligned}
& y=m x+c \\
& 6=m \times 2+2 \\
& 6-2=m \times 2 \\
& \mathbf{4}=\mathbf{2 m} \\
& \mathbf{2}=\boldsymbol{m}
\end{aligned}
$$

Equation of a graph $y=2 x+2$

- Let us solve all the problems in the exercise 21.2 on page 24

Finding the equation of a straight line which passes through two given points

- Let us find the equation of the straight line which passes through the points $(2,5)$ and $(3,7)$.

$$
\text { gradient }(m)=\frac{(7-5)}{(3-2)}=\frac{2}{1}=2
$$

Let us substitute the value of \mathbf{m} and the coordinates of one of the points (\mathbf{x}, \mathbf{y}) into the equation $\mathbf{y}=\mathbf{m x}+\mathbf{c}$. Thereby we can find the value of (c).

$$
\begin{aligned}
& y=m x+c \\
& 5=2 \times 2+c \\
& 5-2=c \\
& \quad c=3 \\
& \text { Equation of a graph } y=2 x+3
\end{aligned}
$$

- Let us find the equation of the straight line which passes through the points $(2,-5)$ and $(-2,3)$.

$$
\text { gradient }(m)=\frac{(3-(-5))}{(-2-2)}=\frac{8}{-4}=-2
$$

Let us substitute the value of mand the coordinates of one of the points(\mathbf{x}, \mathbf{y}) into the equation $\mathbf{y}=\mathbf{m x}+\mathbf{c}$.
Thereby we can find the value of (c).

$$
\begin{aligned}
& y=m x+c \\
& -5=-2 \times 2+c \\
& -5+4=c \\
& \quad c=-\mathbf{1}
\end{aligned}
$$

Equation of a graph $y=-2 x-1$

