Provincial Department of Education - Sabaragamuwa - Week School

epartment of baragamuwa eekly School ion,Sabaragamuwa Province/ Weekly School Department of Education.Sabaragamuwa Province/ Weekly School Department of wa Province/ Weakly Scho ol Department ofEducation, SabaragamuwaProvince/ Weekly Scho ol Departu

Week-27

21 Graphs

Graphs of functions of form $y=a x^{2}$
$y=2 x^{2}$

x	-3	-2	-1	0	1	2	3
x^{2}	9	4	1	0	1	4	9
$2 x^{2}$	18	8	2	0	2	8	18
y	18	8	2	0	2	8	18

The graph is a parabola with a minimum point.
The graph is symmetric about the y-axis.
The equation of the axis of symmetry is $\mathbf{x}=\mathbf{0}$.
The minimum value of the function is $\mathbf{0}$.
The coordinates of the minimum point are $(\mathbf{0}, \mathbf{0})$

$y=-x^{2}$							
x	-3	-2	-1	0	1	2	3
x^{2}	9	4	1	0	1	4	9
$-x^{2}$	-9	-4	-1	0	-1	-4	-9
y	-9	-4	-1	0	-1	-4	$-9-$

The graph is a parabola with a maximum point. The equation of the axis of symmetry is $\mathbf{x}=\mathbf{0}$.
The maximum value of the function is $\mathbf{0}$.
The coordinates of the turning point are $(\mathbf{0}, \mathbf{0})$
Do the exercise 21.4 in page 32.

Graph of a function of the form $y=a x^{2}+b$ $y=2 x^{2}-3$

x	-3	-2	-1	0	1	2	3
x^{2}	9	4	1	0	1	4	9
$2 x^{2}$	18	8	2	0	2	8	18
-3	-3	-3	-3	-3	-3	-3	-3
y	15	5	-1	-3	-1	5	15

The equation of the axis of symmetry is $\mathbf{x}=\mathbf{0}$.
The minimum value of the function is $\mathbf{- 3}$.
The coordinates of the turning point are (0,-3).

$$
y=-x^{2}+2
$$

x	-3	-2	-1	0	1	2	3
x^{2}	9	4	1	0	1	4	9
$-x^{2}$	-9	-4	-1	0	-1	-4	-9
+2	+2	+2	+2	+2	+2	+2	+2
y	-7	-2	1	+2	1	-2	-7

The equation of the axis of symmetry is $\mathbf{x}=\mathbf{0}$.
The maximum value of the function is 2.
The coordinate of the turning point is $\mathbf{(0 , 2)}$.
The interval of values of x for which the function positive -

$1.4<x<1.4$

The interval of values of x for which the function increases positively $-1.4<x<0$
The interval of values of x for which the function decreases nositivelv $0<x<1.4$

Do the exercise 21.5 in page 36

The graph of a function of form $y=a x^{2}+b$,

- Is a parabola with a minimum point when a is a positive value.
- Is a parabola with a maximum point when a is a negative value.
- the equation of the axis of symmetry is $\mathbf{x}=\mathbf{0}$.
- the coordinate of the turning point is $(\mathbf{0}, \mathbf{b})$
- The maximum or minimum value of the function is \mathbf{b}.

Function	The equation of the axis of symmetry	maximum value	minimum value	turning point
$y=x^{2}$	$x=0$	-	0	$(0,0)$
$y=2 x^{2}-3$	$x=0$	-	-3	$(0,-3)$
$y=x^{2}+3$	$x=0$	-	3	$(0,3)$
$y=-x^{2}$	$x=0$	0	-	$(0,0)$
$y=-3 x^{2}+2$	$x=0$	2	-	$(0,2)$
$y=-2 x^{2}-4$	$x=0$	-4	-	$(0,-4)$
$y=5-x^{2}$	$x=0$	5	-	$(0,5)$
$y=3-2 x^{2}$	$x=0$	3	-3	$(0,3)$
$y=\frac{1}{2} x^{2}-3$	$x=0$	-	-	$(0,-3)$
$y=\frac{2}{5}-2 x^{2}$	$x=0$	$\frac{5}{2}$	$\left(0, \frac{2}{5}\right)$	

Do the exercise 21.6 and 21.7 in page 39,40.

If the graph of the function $y=2 x^{2}+5$ moves upwards along the y axis by 2 units, the equation of the graph is $y=2 x^{2}+7$. (add 2 unit to 5)

- Do the exercise 21.8 in page 42.

