Education,Sabaras
Province/Weelly

ent of Education,SabaragamuwaProvince/ Weekly School Department of Education

Hydrostatic Pressure and its applications

Remember how you make footprints on the ground while you walk on a sandy ground. How does this happen? It's because of the weight of your body puts some thrust towards the ground. You will feel a push on your shoulder as you are lifting the school bag. It is caused by the weight of your bag. In such cases, there is a scientific term you have learned to describe the resulting thrust on a certain surface. It is "Pressure".

a \qquad quantity. The standard measuring unit of pressure is \qquad

Pressure $=$ \qquad
(2) Pressure is caused by solids as well as liquids. Engage in the following activities to study the nature of pressure in a fluid column.
i. Fill a polythene bag with water. Then lift it up and pierce with a pin in several places. What observations could you get?

What conclusion can you draw from those observations ?
ii. Take a plastic bottle with a height of about 25 cm . Above 2 cm from the bottom of the bottle, drill 5 small holes at equal distances. What observations did you see ?
What conclusion can you draw from those observations?
iii. Take a plastic bottle with a height of about 25 cm . Make 4 equally spaced (approximately 5 cm) holes in a row from bottom to top. Hold the bottle at some height from the ground level and fill the water. What observations did you see ?
What conclusion can you draw from those observations?
(3) Liquid pressure does not depend on the shape of the liquid column but only on the vertical height. Set up a suitable demonstration for it. Name the material used and draw the set up.
(4) List the 4 properties of liquid pressure according to the activities you have done above.
(5) Use the example here to build a statement for liquid pressure based on the statement you obtained for "pressure" at (1) above.

Density of liquid filled into the vessel below $=\rho$ (Row symbol)
Liquid column height $=\mathrm{h}$
Liquid pressure at the bottom of the vessel $=\mathrm{P}$
Gravitational acceleration $=g$
\vdots Let's find the volume of the liquid column placed above unit : area of the vessel.

Volume $=$ Area \times Height $=1 \times h=h$
The mass of the liquid column in that volume $=$ The density of
 $=\ldots . . \mathrm{x}$. \qquad
If the weight of the liquid column $=W$,

W = Mass of the liquid column x Gravitational acceleration
\qquad . $=$ \qquad

Pressure $=$ \qquad
\qquad
Therefore; Liquid pressure $=\underline{\text { Weight }}$ of the liquid column
Area
P
$=.$.
$\mathrm{P} \quad=\mathbf{h p g}$
(6) A fish is swimming at a 10 m depth in the sea. Calculate the pressure, caused by seawater on that fish (Consider density of seawater is $1050 \mathrm{kgm}^{-3}$ and gravitational acceleration is $10 \mathrm{~ms}^{-2}$)
(7) A model of "JCB" machine is one of the most interesting items in an exhibition. Here the designer has used only 4 syringes.
i) What is the basic theory behind this apparatus?

ii) Create a simple setup using only the tools below to demonstrate the above mentioned theory.

- 50 ml syringe -01
- 30 ml syringe - 01
- 40 ml water
- 30 cm saline tube
iii) Take observations by operating the above setup.

8) Improve the setup to explain the principle of hydraulic press.
9) Name 3 instances where the principle of liquid pressure transmission is applied.
10) Illustrate using a diagram how principle of liquid pressure transmission works in a vehicle break system (read for more on page no. 72 ,part ii grade 10 science book).
11) Answer the questions using the below diagrams.

i) In which instance a pressure occurs due to expansion of compressed air?
ii) Select from the above instances where atmospheric pressure represents correctly.
iii) Explain why the liquid level in the " \mathbf{x} " arm changes when the balloon knot in the " \mathbf{c} " is removed.
