

Unit 26 - Frequency Distribution (ii)

• Calculating the mean of grouped data

Calculating the mean using the assumed mean

The class intervals of a grouped frequency distribution may sometimes contain large mid-values. In such situations, finding the mean using the method what you have already learnt may not be easy. Let us consider a more suitable method of finding the mean of a distribution of this type, through an example.

Given below is the information about tourists who have arrived in a hotel.

Number of tourists	8 - 12	13 - 17	18 - 22	23 - 27	28 - 32	33 - 37	38 - 42
Number of days	5	23	22	16	10	7	7

Let us first find the mid-values which represent each of the class intervals.

Let us now assume that the mid-value 25 of the class interval 23 - 27 is the mean. That is, let us take 25 to be the assumed mean. Now let us find the **deviation** of each mid-value from the assumed mean by subtracting the assumed mean from each mid-value. We denote the deviation by (d).

That is, **Deviation = mid-value - assumed mean**

] 、	(fd)	Frequency(f)	Deviation(d)	Mid - Value	Class Interval
]	-75	5	-15	10	8 - 12
315	-130	13	-10	15	13 - 17
ןן	-110	22	-5	20	18 - 22
l) .	0	16	0	25	23 - 27
+225	50	10	+5	30	28 - 32
5	70	7	+10	35	33 - 37
]	105	7	+15	40	38 - 42
	$\Sigma fd = -90$	$\Sigma f = 80$			

Here Σf denotes the total number of families, fd denotes the product of the deviation and the corresponding frequency, and Σfd denotes the sum of the values in the fd column.

The mean is obtained by, **Mean = Assumed Mean + Mean of the Deviations**

Mean =
$$A + \frac{\Sigma f d}{\Sigma f}$$

= $25 + \frac{(-90)}{80}$

$$= 25 + (-1.125)$$

= 23.875

• Solve the problems **1,2,3,4,5** and **6** in Excersice **26.3** from the pages **95** and **96** in your Mathematics Text Book.