

$28^{\text {th }}$ Lesson - Constructions

Construction of Triangles

1. When the lengths of the three sides of a triangle are given

Construct the triangle $A B C$ such that $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$.
Step 1: Draw a straight line segment of length 5 cm and name it $A B$.
Step 2: Take B as the centre and draw a circular arc of radius 7 cm (of sufficient length).
Step 3: Draw another circular arc of radius 9 cm with centre A, such that it intersects the arc drawn in step 2 above.
Step 4: Name the point of intersection of the two arcs as C, and by joining $A C$ and $B C$, complete the triangle $A B C$.

2. When the lengths of two sides and the magnitude of the included angle are given

Construct the triangle $X Y X$ such that $X Y=6 \mathrm{~cm}, Y Z=7 \mathrm{~cm}$ and $\quad X \hat{Y} Z=60^{\circ}$
Step 1: Construct an angle of 60 degrees and name its vertex Y. The sides of the angle should be longer than the given lengths of the triangle.

Step 2: Mark a straight line segment XY of length 6 cm on one side of the angle, and a straight line segment $Y Z$ of length 7 cm on the other side of the angle. (See the figure)

Step 3: Complete the triangle XYZ by joining XZ.

3. When the magnitudes of two angles and the length of a side are given Construct the triangle $A B C$ such that $A B=$ 6.2 cm ,

$$
A \hat{B} C=60^{\circ}
$$

$$
B \hat{A} C=90^{\circ}
$$

Step 1: Construct a straight line segment of length 6.2 cm and name it $A B$.
Step 2: Construct the angle at the point B, such that $\quad \underline{A B C}=60^{\circ}$
Step 3: Construct the angle at the point A , such that $\quad \underline{B A} C=90^{\circ}$

Step 4: Name the intersection point of $B C$ and $A C$ as C. Then $A B C$ is the required triangle.

