Covid 19 weekly school - Grade 9 - January 2nd week

Binary Numbers

Show the numbers given in base ten as binary numbers

1. 10_{ten} 2 |<u>10</u> 2 |<u>5</u> ----- Remainder 0 2 |<u>2</u> ----- Remainder 1 2 |<u>1</u> ----- Remainder 0 0 ----- Remainder 1

Write down the remainders bottom to top gradually and obtain the binary number

 $10_{ten} = 1010_{two}$

2. Show 13_{ten} as a binary number

2 |<u>13</u> 2 |<u>6</u> ----- Remainder 1 2 |<u>3</u> ----- Remainder 0 2 |<u>1</u> ----- Remainder 1 0 ----- Remainder 1

 $13_{ten} = 1101_{two}$

Convert the given binary numbers to numbers with base ten

1. Show 1011_{two} as a decimal number (number with base ten)

 $\begin{array}{ccccccc} 1 & 0 & 1 & 1 \\ Place value: \\ 2^3 & 2^2 & 2^1 & 2^0 \\ Value of the number \\ 8 & 4 & 2 & 1 \end{array}$

First multiply the value of the number by the place value and add all the values to obtain the decimal number

= (8 x 1) + (4 x 0) + (2 x 1) + (1 x 1) $= 11_{ten}$

2. Show 100100_{two} as a decimal number

1 0 0 1 0 0 Place value: $2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$ Value of the number 32 16 8 4 2 1 = $(32 \times 1) + (16 \times 0) + (8 \times 0) + (4 \times 1) + (2 \times 0) + (1 \times 0)$ = 36_{ten}

Addition of binary numbers

1. $10_{two} + 1_{two}$

2 ¹	2 ⁰
1	0_{two}
+	<u>1 two</u>
1	<u>1 two</u>

So $10_{two} + 1_{two} = 11_{two}$

1_{two}	+ 0	two	=	1_{two}
1_{two}	+ 1	two	=	10_{two}
1_{two}	+ 1 _t	w_{o} + 1_{t}	wo =	11_{two}

2. Find the value of $11_{two} + 1_{two}$

Here place value of 2^0 is 1 + 1 = 2, but $2 = 10_{two}$, so that 1 add to the (line of 2^1) left side

So $11_{two} + 1_{two} = 100_{two}$

Subtraction of binary numbers

1. Find the value of $111_{two} - 10_{two}$

2^{2}	2 ¹	2 ⁰
1	1	1_{two}
	1	0 <u>two</u>
1	0	1 <u>two</u>
- 1	1 0	<u>0 two</u>

2. Find the value of $110_{two} - 1_{two}$

2^{2}	2 ¹	2 ⁰
1	1	0_{two}
		1 <u>two</u>
1	0	1 _{two}

2 out of 0 cannot be deducted. Therefore brings 1 from left side. Then place value of 2^0 is 2. Then subtract 1 out of 2. After that the place value of 2^1 is 0.