

Factors of quadratic expressions

Factors of algebraic expressions

- 3x+6 is an algebraic expression. When it is represented as 3(x+2),3 & (x+2) are it's factors.
- Since $4x^2 + 6x = 2x(2x + 3)$, 2x & (2x+3) are factors of $4x^2 + 6x$.

Factors of trinomial quadratic expressions.

- Trinomial quadratic expressions are the expressions of the form of, $ax^2 + bx + c$.
 - (Here $a \neq 0, b \neq 0, c \neq 0$)

a=coefficient of x^2

b =coefficient of x

c =constant term

For example let $x^2 + 5x + 6$

$$x^{2} + 5x + 6 = ax^{2} + bx + c$$

Here

Another example let $-x^2 - x + 6$,

$$-x^{2}-x+6 = ax^{2} + bx + c$$

Here

a = -1,b = -1,c = 6

Let's consider the product of (x+2)&(x+3),

$$(x+2)(x+3) = x(x+3) + 2(x+3)$$
$$= x^{2} + 3x + 2x + 6$$
$$= x^{2} + 5x + 6$$

- The middle term of the trinomial quadratic expression $x^2 + 5x + 6$ which is 5x is represented as (3x + 2x).
- Product of the two terms 3x&2x is represented as 3x x 2x=6x²
- The product of the first and last term of the trinomial quadratic expression x^2 +5x+6 is $6x^2$
- 1. Let's find the factors of $x^2 + 7x + 10$

Product of the first and last term = $x^2 \times 10 = +10x^2$

```
Middle term=+7x
```

Product $as+10x^2$ and the addition as +7x can be made using +5x&+2x.

Then,

$$x^{2} + 7x + 10 = x^{2} + 5x + 2x + 10$$
$$= x(x+5) + 2(x+5)$$
$$= (x + 2)(x + 5)$$

2. Let's find the factors of x^2 -7x + 12

Product of the first and last term= $x^2 x 12=12x^2$

Middle term=-7x

Product $as+12x^2$ and the addition as -7x can be made using -4x&-3x.

Then,

$$x^2-7x + 12 = x^2-4x-3x + 12$$

 $= x(x-4)-3(x-4)$
 $= (x-4)(x-3)$

3. Let's find the factors of x^2 -7x-8

Product of the first and last term= $x^2 x - 8 = -8x^2$

Middle term=-7x

Product as $8x^2$ and the addition as -7x can be made using -8x +x

Then, $x^2 - 7x - 8 = x^2 - 8x + x - 8$

$$= x(x-8) + (x-8)$$
$$= (x-8)(x + 1)$$

4. Let's find the factors of $2a^2$ + 13ab-7b²

Product of the first and last term= $2a^2 x - 7b^2 = -14ab^2$

Middle term=+13ab

Product as-14ab² and the addition as +13ab can be made using 14ab&-ab

Then,

$$2a^2 + 13ab - 7b^2 = 2a^2 + 14ab - ab - 7b^2$$

 $= 2a(a+7b) - b(a+7b)$
 $= (2a-b)(a + 7b)$

5. When the expressions like $12-4x-x^2$ are given to fatorize,

Writing it as $-x^2 - 4x + 12$ is easier to factorize.

Answer to the exercises **7**.1 & 7.2

Factors of the expressions of the form of difference of two squares.

When the product of (x-y) & (x+y) is considered,

$$(x-y)(x+y) = x^{2} + xy - xy - y^{2}$$

= $x^{2} - y^{2}$
 $x^{2} - y^{2} = (x-y)(x+y)$

Since, $x^2 - y^2 = x^2 + 0 - y^2$,

Let's factorize $x^2 + 0 - y^2$

Product of the first and last term= $x^2 x - y^2 = -x^2 y^2$

Middle term=0

Product as -x2y2 and the addition as 0 can be made using -xy&xy

Then,

$$x^2 + 0 - y^2 = x^2 - xy + xy - y^2$$

 $= x(x-y) + y(x-y)$
 $= (x + y)(x-y)$
 $x^2 - y^2 = (x-y)(x+y)$

Examples:-

1.
$$x^2 - 4 = x^2 - 2^2 = (x - y)(x + y)$$

2. $25a^2 - 16b^2 = 5^2a^2 - 4^2b^2 = (5a - 4b)(5a + 4b)$
3. $(x+3)^2 - y^2 = [(x+3)-y][(x+3) + y]$
4. $(a-2)^2 - (a+5)^2 = [(a-2)-(a+5)][(a-2)+(a+5)] = [a-2-a-5][a-2+a+5]$

= (-7)(2a + 3)

Answer to the exercises7 .3 & 7.4